Locality in the Derivation of Cumulativity

Masashi Harada, Department of Linguistics, McGill University (masashi.harada@mail.mcgill.ca)

Overview

This poster is about the so-called cumulativity phenomenon in English. In particular, the poster addresses a question about cumulativity that has been discussed in the literature, namely whether a source of cumulativity requires locality. I will argue that the source of cumulativity requires locality, and that apparent 'non-local cumulativity' has a different source, which I call the inferential source. It will also be shown that non-local cumulativity is constrained in the ways that are consistent with the inferential source, but surprising if locality does not exist.

What is Cumulativity?

Sentences with two plu
(1) a. The two boys typed the two recipes
b. $=1$ iff $\forall \mathrm{x} \in\{$ boy 1, boy 2$\} \exists \mathrm{y} \in\{$ recipe 1, recipe 2$\} \operatorname{typed}^{\prime}(\mathrm{y})(\mathrm{x})$ $\wedge \forall y \in\{$ recipe 1, recipe 2$\} \exists x \in\{$ boy 1, boy 2$\}$ typed' $(y)(x)$ Cumulativity has been argued to arise from a grammatical, compositional source, e.g., covert trivalent operator Cuml (e.g., Beck and Sauerland 2000, B\&S).
(2) a. The two boys typed the two recipes
b. LF: [The two boys [[Cuml typed] the two recipes]]
c. $\operatorname{Cuml}(\mathrm{P})(\varphi)(\chi)=1$ iff $\forall \mathrm{x} \in \chi \exists \mathrm{y} \in \varphi \operatorname{typed}^{\prime}(\mathrm{y})(\mathrm{x}) \wedge \forall \mathrm{y} \in \varphi \exists \mathrm{x} \in \chi \operatorname{typed}^{\prime}(\mathrm{y})(\mathrm{x})$
d. $(2 \mathrm{a})=\operatorname{Cuml}($ TYPED $)(\{$ recipe 1, recipe 2$\})(\{$ boy 1, boy 2$\})$

One of the issues in the cumulativity literature is about whether the compositional source requires locality, and this is what I'm concerned with here.

No Locality of Compositional Source?

$B \& S$ assume that Cuml may take a syntactically derived predicate (3).
(3) a. The two boys wanted to type the two recipes.
b. LF: [[The two boys $]_{2}\left[[\text { the two recipes }]_{1}\left[\right.\right.$ Cuml $\left[t_{2}\right.$ wanted to type $\left.\left.\left.t_{1}\right]\right]\right]$
c. $(1 \mathrm{a})=\operatorname{Cuml}($ TWANTED-TO-TYPE $)(\{$ recipe 1, recipe 2$\})(\{$ boy 1, boy 2$\})$
$B \& S$ argue that the compositional source requires locality. They observe that (4a) disallows cumulativity with respect to the bold phrases unlike (3a) because QR is generally much harder out of finite clauses than non-finite clause (4b).
(4) a. The two lawyers have pronounced that the two proposals are against the law. (Beck and Sauerland 2000, 365
b. [[The two lawyers $]_{2}[\text { the two proposals }]_{1}\left[\left[\mathrm{Cuml}\left[\mathrm{t}_{2}\right.\right.\right.$ have pronounced $\ldots \mathrm{t}_{1} \ldots$ law]]] While (4a) does not seem to allow cumulativity, Schmitt (2019) observes that (4a) allows it in richer scenarios. Such cumulativity is also available in other sentences like (5).
(5) [Scenario: Boy1 confirmed that the noodle recipe is flawless. Boy2 confirmed that the broth recipe is flawless.]
The two boys confirmed [CP that [DP the two recipes] are flawless]
Based on data like (5), Schmitt proposes that the part structures of plurals can 'project' to the meanings of expressions including those plurals - call this plural projection. This enables CP in (5) to denote a doubleton set (6a), and Cuml takes this set, CONFIRMED, and \{boy1,boy2\}, deriving cumulativity.
(6) a. $\llbracket D P \rrbracket=\{$ noodle(.recipe), broth(.recipe) $\}$
b. $\llbracket C P \rrbracket=\{$ THAT-NOODLE-IS-FLAWLESS, THAT-BROTH-IS-FLAWLESS $\}$

In this way, Schmitt's compositional source does not respect locality B\&S assume.
Does compositional source really not respect locality?

Confound for Apparent Non-Locality:
 Inferential Source

Building on Krifka (1989) and Pasternak (2018) a.o., I propose that cumulativity of (5) comes from an inference about the extension of confirmed (CF) in the given scenario. First, (5) can be considered to have the truth conditions in (7)
(7) $\llbracket(5) \rrbracket=1$ iff $<\{$ boy 1, boy 2$\},\left\{p_{1}\right\}>\in C F \quad p_{1}=\lambda w$. the two recipes are flawless in w READ: (5) is true iff each member of $\left\{\mathrm{p}_{1}\right\}$ was confirmed as a result of each member of $\{$ boy 1, boy 2$\}$ having done confirming.

In the scenario of (5), CF involves the two tuples in (8). Given the presence of those we can naturally assume that the inference in (9) is valid.
(8) Scenario: $<\{$ boy 1$\},\left\{\mathrm{q}_{1}\right\}>\in \mathrm{CF}, \quad \mathrm{q}_{1}=\lambda \mathrm{w}$. the noodle recipe is flawless in w $<\{$ boy 2$\},\left\{\mathrm{q}_{2}\right\}>\in C F \quad \mathrm{q}_{2}=\lambda \mathrm{w}$. the broth recipe is flawless in w

(9) Cumulative inference:

$<\{$ boy 1$\},\left\{q_{1}\right\}>\in C F \wedge<\{$ boy 2$\},\left\{q_{2}\right\}>\in C F \rightarrow<\{$ boy 1, boy 2$\},\left\{q_{1}, q_{2}\right\}>\in C F$ READ: If each member of $\left\{q_{1}\right\}$ was confirmed as a result of each member of \{boy1\} having done confirming, and each member of $\left\{q_{2}\right\}$ was confirmed as a result of each member of $\{b o y 2\}$ having done confirming, then each member of $\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}$ was confirmed as a result of each member of $\{$ boy 1, boy 2$\}$ having done confirming.
Based on the conclusion of (9), the following inference can also be naturally assumed to be valid. The conclusion of (10) satisfies the truth conditions in (7). Therefore, data like (5) do not establish that compositional source of cumulativity should be non-local

(10) Parts-whole inference

$<\{$ boy 1, boy 2$\},\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}>\in \mathrm{CF} \wedge\left[\mathrm{q}_{1} \wedge \mathrm{q}_{2}{ }_{\mathrm{c}}{ }_{\mathrm{c}} \mathrm{p}_{1}\right] \rightarrow<\{$ boy 1, boy 2$\},\left\{\mathrm{p}_{1}\right\}>\in \mathrm{CF}$ (Θ_{c} : contextual equivalence)

Independent Motivations for Inferential Source

Only the inferential source captures the sub-atomic cumulativity in (12) with respect to the two boys and the parts of the referent of the ramen recipe. In other words, only the inferential source captures the truth of (12).
(12) [Scenario: Boy1 confirmed the noodle recipe is flawless. Boy2 confirmed the broth recipe is flawless. The noodle and broth recipe constitute the ramen recipe.] The two boys confirmed that the ramen recipe is flawless.
$>$ (12) differs from (5) only in that the argument of flawless is the ramen recipe.
The inferential source captures (12) in the same way as it captures (5) except that p_{1} in (7) is a proposition [$\lambda \mathrm{w}$. the ramen recipe is flawless in w].

The compositional source with plural projection does not capture (12). First, plura projection can access the part structures of plurals but not singulars; the ramen recipe effectively denotes \{ramen(.recipe)\} instead of \{noodle,broth\}. This difference between plurals and singulars is necessary to capture the contrast in (13a-b), a.o..
(13) a. The two recipes are completely correct and completely wrong.
b. \#The ramen recipe is completely correct and completely wrong.
adapted from Paillé 2020, 84)
Given the above assumption, the embedded clause in (12) denotes \{THAT-RAMEN-ISflawless \}. Cuml relates this set with \{abe,bert \} cumulatively. Thus, (12) is wrongly predicted true iff Abe and Bert each confirmed the whole ramen recipe is flawless.

In this way, inferential source is independently needed to capture (12).

New Evidence for Locality

(14) [Scenario: That the earth is round is true. That the earth is flat is false.]
a. That the earth is round and that the earth is flat are true and false
b. \#That the earth is round and flat is true and false.

Under the inferential source analysis, assuming a version of non-Boolean and (e.g., Link 1983), we can assume that the matrix predicates in (14) denote (15a). Assuming that CP conjunction denote sets of propositions, (14 a) denotes (15 b). On the other hand, (14 b) denotes $(15 \mathrm{c})$. In $(15 \mathrm{c}), \rho_{1}$ and ρ_{2} are both $\left\{\mathrm{p}_{1}\right\}$, so (14b) is predicted to mean that the proposition p_{1} is both true and false, which is contradictory. Thus, the felicity of $(14 \mathrm{~b})$ is predicted.
(15) a. \llbracket be true and false $\rrbracket=\lambda \rho . \exists \rho_{1}, \rho_{2}\left[\rho=\rho_{1} \cup \rho_{2} \wedge \rho_{1} \in \operatorname{TRUE} \wedge \rho_{2} \in\right.$ FALSE
b. $\llbracket(14 a) \rrbracket=1$ iff $\exists \rho_{1}, \rho_{2}\left[\left\{q_{1}, q_{2}\right\}=\rho_{1} \cup \rho_{2} \wedge \rho_{1} \in\right.$ TRUE $\wedge \rho_{2} \in$ FALSE $]$
$q_{1}=\lambda w$. the earth is round $w, \quad q_{2}=\lambda w$. the earth is flat in w
c. $\llbracket(14 b) \rrbracket=1$ iff $\exists \rho_{1}, \rho_{2}\left[\left\{p_{1}\right\}=\rho_{1} \cup \rho_{2} \wedge \rho_{1} \in \operatorname{TRUE} \wedge \rho_{2} \in\right.$ FALSE $]$ $\mathrm{p}_{1}=\lambda \mathrm{w}$. the earth is round and flat w

In contrast, if plural projection is available, the subjects in (14a) and (14b) both denote a doubleton set of q_{1} and q_{2}. Thus, an analysis with plural projection cannot straightforwardly explain the contrast between (14a) and (14b).
There are other examples like (14), exemplified in (16).
(16) [Scenario: The two boxers, Abe and Bert, will fight against each other in a final match Coach1 believes that Abe would win. Coach2 believes that Bert would win.]
A: Everyone believes that the final match is going to be a draw
B: a. No! The two coaches believe that Abe would win and that Bert would win. b. \#No! The two coaches believe that the two boxers would win.

Inferential Source vs.

Pasternak's (2018) Analysis

The inferential source is effectively equivalent to Pasternak's (2018) analysis of a type of cumulativity. But there is a crucial difference between them; "q $q_{1} \wedge q_{2} \Leftrightarrow{ }_{c} p_{t}$ " in (10) is " $q_{1} \wedge q_{2} \Rightarrow_{c} p_{1}$ " in Pasternak's analysis. This difference results in the fact that while Pasternak's analysis fails to capture the falsity of (18a), as Schmitt (2020) observes, the inferential source captures it
(18) [Scenario: Ada is looking forward to Sue's party: She is certain [that every man at the party will fall in love with her $]_{q 1}$. Bea is also looking forward to the party: She hates men and is certain [that only one man will attend: Roy] ${ }_{q 2}$. Sue tells me: Ada and Bea are really looking forward to the party...]
a. They believe [that Roy will fall in love with Ada] $]_{p 1}$. (Schmitt 2020, 575)
b. $\llbracket(18 a) \rrbracket=1$ iff $<\{$ ada, bea $\},\left\{p_{1}\right\}>\in$ BELIEVE
(19) Scenario: $<\{$ ada $\},\left\{\mathrm{q}_{1}\right\}>\in$ BELIEVE, $<\{b e a\},\left\{\mathrm{q}_{2}\right\}>\in$ BELIEVE,
(20) Cumulative inference
$<\{$ ada $\},\left\{q_{1}\right\}>$ EBELIEVE $\wedge<\{b e a\},\left\{q_{2}\right\}>\in$ BeLIEVE \rightarrow
$<\{$ ada,bea $\},\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}>\in$ beLieve
(21) Parts-whole inference:
$<\{$ ada,bea $\},\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}>\in$ BELIEVE $\wedge\left[\mathrm{q}_{1} \wedge \mathrm{q}_{2} \Leftrightarrow_{\mathrm{c}} \mathrm{p}_{1}\right] \rightarrow\langle$ ada,bea $\},\left\{\mathrm{p}_{1}\right\}>\in$ BELIEVE $>\mathrm{q}_{1} \wedge \mathrm{q}_{2} \nRightarrow_{\mathrm{c}} \mathrm{p}_{1}$ as $\mathrm{q}_{1} \wedge \mathrm{q}_{2} \not{ }_{\mathrm{c}} \mathrm{p}_{1}$ (although $\mathrm{q}_{1} \wedge \mathrm{q}_{2} \Rightarrow_{\mathrm{c}} \mathrm{p}_{1}$).
Thus, only the inferential source captures the falsity of (18a)

Acknowledgments

I would like to thank Alan Bale, Berrhard Schwarz and Michael Wagnee for their insightful comments and questions on this rojeect.
Ialso wish to thank Christopher Estrada, Nina Hasinger, Jonathan Palluci, Viol Schmit, Yale Sharvit, Andrew Suson, Peter Sutt Ialso wish to thank Christopher Estrada, Nina Haslinger, Jonathan Paluci, Viola Schmitt, Yale Sharrvit, Andrew Suson, Peter
Marcin Wagiel, and five SALT32 reviewers as well as paticicipants in the Mcciill syntax semantics reading group for roviding

Selected References

Beck, S. and Sauerland, U. (2000). Cumulation is needed: a reply to Winter (2000). Link, G. (1983). The logical analysis of plurals

